Introduction
Randomness is the biggest enemy of data scientists. How to distinguish whatβs real from whatβs random? This is the goal of hypothesis testing. We will introduce hypothesis testing through the permutation test. To illustrate the permutation test, let us start with a simple example of a dataset storing information about traffic in Lincoln and Holland tunnels.
Table 9.1: Snippet of Traffic Dataset
|
TUNNEL
|
DAY
|
VOLUME_PER_MINUTE
|
1421
|
Lincoln
|
weekday
|
68.0
|
2220
|
Lincoln
|
weekday
|
78.0
|
2380
|
Lincoln
|
weekday
|
83.0
|
2495
|
Lincoln
|
weekend
|
40.0
|
1465
|
Lincoln
|
weekday
|
74.0
|
1656
|
Lincoln
|
weekday
|
55.0
|
109
|
Holland
|
weekday
|
87.5
|
2689
|
Lincoln
|
weekend
|
73.0
|
1543
|
Lincoln
|
weekday
|
91.0
|
2673
|
Lincoln
|
weekend
|
74.0
|
We observe that Lincoln traffic is higher than Holland tunnel traffic by calculating average traffic volume per minute for each of the tunnels using the provided data.
We conclude with 68.54 mean volume per minute for Lincoln and 67.71 mean volume per minute for the Holland tunnel. This seems to indicate that Lincoln traffic is higher than Holland traffic. But is it? Or is it just random deviation? Perhaps if we took more measurements, the trend would be reversed? This is where the permutation test comes handy. First, let us talk about the null hypothesis and the alternative hypothesis.
Null hypothesis for the Lincoln-Holland tunnel observation is that, not surprisingly, there is no difference in traffic between the two tunnels.
The alternative hypothesis states that Lincoln tunnel is more busy than Holland tunnel.
Does observed data (observed traffic difference) provide us with enough evidence to reject null hypothesis and in fact support the alternative hypothesis? To answer this question we need to decide whether the observed result is reasonably likely to come up randomly under the condition that NULL hypothesis holds.
How likely it is that observed difference (D=0.83) comes randomly?
Permutation test helps us to estimate the chance that D=0.83 will come up randomly under the condition that traffic in Holland and Lincoln tunnels is equal.
In each permutation of the permutation test we randomly scramble the traffic table once. Permutation test is run many times, typically 10,000, even 100,000 times, and each permutation simulates a random process by simply reassigning the traffic volume values randomly between tunnels. The numbers of traffic measurements in Holland and Lincoln tunnels respectively remain the same. Existing values are scrambled though - breaking any relationship between volume numbers and tunnel names. Each permutation is like rolling a dice. How often will this random process produce the result which is at least as extreme as D=0.83 that we have observed? The less often it happens the more likely it is that what we have observed is NOT random. For example, if we can get our observed result only 3 times in 1000 rolls of a dice (permutation test) it means that with probability of 99.7% our observed result cannot be random.
Permutation test provides a palpable experience of randomness. Just roll the dice many times and see how often you can get the observed result or more. If you can get D>0.83 relatively often (above what is called significance level usually it is at least 5% of the time), then you cannot reject the null hypothesis. In other words the conclusion that your observation appeared RANDOMLY. Otherwise, we can conclude that observation was not random - and we reject the null hypothesis.
Notice, that every time we run the permutation test function we may get slightly different p-values. This is because permutations are random. The more times we run a permutation test, the closer it will approximate the βrealβ p-value. Snippet 6.1 shows permutation test results for the Traffic data set.
Another test which is often used for difference of means hypothesis testing is the z-test. It is described very well in the attached link to the Khan Academy lecture. Here we run z-test function in one of the following snippets.
Permutation test
The following snippet 9.2 shows the code for hypothesis test of difference of means.
Is the mean traffic (VOLUME_PER_MINUTE) in the Holland tunnel bigger than mean traffic (VOLUME_PER_MINUTE) in the Lincoln?
Do this in your R studio, since we cannot install our package in data camp service we are using to run the code snippets
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6IlBlcm11dGF0aW9uIDwtIGZ1bmN0aW9uKGRmMSxjMSxjMixuLHcxLHcyKXtcbiAgZGYgPC0gYXMuZGF0YS5mcmFtZShkZjEpXG4gIERfbnVsbDwtYygpXG4gIFYxPC1kZlssYzFdXG4gIFYyPC1kZlssYzJdXG4gIHN1Yi52YWx1ZTEgPC0gZGZbZGZbLCBjMV0gPT0gdzEsIGMyXVxuICBzdWIudmFsdWUyIDwtIGRmW2RmWywgYzFdID09IHcyLCBjMl1cbiAgRCA8LSAgYWJzKG1lYW4oc3ViLnZhbHVlMiwgbmEucm09VFJVRSkgLSBtZWFuKHN1Yi52YWx1ZTEsIG5hLnJtPVRSVUUpKVxuICBtPWxlbmd0aChWMSlcbiAgbD1sZW5ndGgoVjFbVjE9PXcyXSlcbiAgZm9yKGpqIGluIDE6bil7XG4gICAgbnVsbCA8LSByZXAodzEsbGVuZ3RoKFYxKSlcbiAgICBudWxsW3NhbXBsZShtLGwpXSA8LSB3MlxuICAgIG5mIDwtIGRhdGEuZnJhbWUoS2V5PW51bGwsIFZhbHVlPVYyKVxuICAgIG5hbWVzKG5mKSA8LSBjKFwiS2V5XCIsXCJWYWx1ZVwiKVxuICAgIHcxX251bGwgPC0gbmZbbmYkS2V5ID09IHcxLDJdXG4gICAgdzJfbnVsbCA8LSBuZltuZiRLZXkgPT0gdzIsMl1cbiAgICBEX251bGwgPC0gYyhEX251bGwsbWVhbih3Ml9udWxsLCBuYS5ybT1UUlVFKSAtIG1lYW4odzFfbnVsbCwgbmEucm09VFJVRSkpXG4gIH1cbiAgbXloaXN0PC1oaXN0KERfbnVsbCwgcHJvYj1UUlVFKVxuICBtdWx0aXBsaWVyIDwtIG15aGlzdCRjb3VudHMgLyBteWhpc3QkZGVuc2l0eVxuICBteWRlbnNpdHkgPC0gZGVuc2l0eShEX251bGwsIGFkanVzdD0yKVxuICBteWRlbnNpdHkkeSA8LSBteWRlbnNpdHkkeSAqIG11bHRpcGxpZXJbMV1cbiAgcGxvdChteWhpc3QpXG4gIGxpbmVzKG15ZGVuc2l0eSwgY29sPSdibHVlJylcbiAgYWJsaW5lKHY9RCwgY29sPSdyZWQnKVxuICBNPC1tZWFuKERfbnVsbD5EKVxuICByZXR1cm4oTSlcbn0iLCJzYW1wbGUiOiIjaW5zdGFsbC5wYWNrYWdlcyhcImRldnRvb2xzXCIpXG4jZGV2dG9vbHM6Omluc3RhbGxfZ2l0aHViKFwiZGV2YW5zaGFnci9QZXJtdXRhdGlvblRlc3RTZWNvbmRcIilcblxuI1Blcm11dGF0aW9uVGVzdFNlY29uZDo6UGVybXV0YXRpb24oZCwgXCJDYXRcIiwgXCJWYWxcIiwxMDAwMCwgXCJHcm91cEFcIiwgXCJHcm91cEJcIilcbnRyYWZmaWM8LXJlYWQuY3N2KFwiaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL2Rldjc3OTYvZGF0YTEwMV90dXRvcmlhbC9tYWluL2ZpbGVzL2RhdGFzZXQvVHJhZmZpYzIwMjIuY3N2XCIpXG5QZXJtdXRhdGlvbih0cmFmZmljLCBcIlRVTk5FTFwiLCBcIlZPTFVNRV9QRVJfTUlOVVRFXCIsMTAwMCxcIkhvbGxhbmRcIiwgXCJMaW5jb2xuXCIpXG4gXG4jVGhlIFBlcm11dGF0aW9uIGZ1bmN0aW9uIHJldHVybnMgdGhlIGFic29sdXRlIHZhbHVlIG9mIHRoZSBkaWZmZXJlbmNlLiBTbyB0aGUgcmVkIGxpbmUgaXMgdGhlIGFic29sdXRlIHZhbHVlIG9mIHRoZSBvYnNlcnZlZCBkaWZmZXJlbmNlLiBZb3Ugd2lsbCBzZWUgYSBoaXN0b2dyYW0gaGF2aW5nIGEgbm9ybWFsIGRpc3RyaWJ1dGlvbiB3aXRoIGEgcmVkIHNob3dpbmcgdGhlIG9ic2VydmVkIGRpZmZlcmVuY2UuIn0=
z-test
Null Hypothesis - Traffic in Holland tunnel is the same as traffic in Lincoln tunnel.
Alternative Hypothesis - Traffic in the Holland Tunnel is larger than traffic in the Lincoln tunnel.
In the snippet 9.3 we end up calculating the p-value which leads to rejection of Null hypothesis (good news for data scientist, bad for the sceptic). Indeed, p-value is less than the significance level of 5%.
This means, that under null hypothesis it is extremely unlikely (less than 5% chance) to see the result which is at least as big as the observed difference of means.
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6InpfdGVzdCA8LSBmdW5jdGlvbihkYXRhLGNvbDEsY29sMixzdWIxLHN1YjIpIHtcbiAgZGF0YSA8LSBhcy5kYXRhLmZyYW1lKGRhdGEpXG4gIFYxPC1kYXRhWyxjb2wxXVxuICBWMjwtZGF0YVssY29sMl1cbiAgI2RhdGEgY2xlYW4gYW5kIHN1YnNldCwgZWl0aGVyXG4gIGxpbmNvbG4uZGF0YSA8LSBzdWJzZXQoZGF0YSwgVjEgPT0gc3ViMSlcbiAgaG9sbGFuZC5kYXRhIDwtIHN1YnNldChkYXRhLCBWMSA9PSBzdWIyKVxuICBcbiAgI3RyYWZmaWMgYXQgbGluY29sblxuICBsaW5jb2xuLnRyYWZmaWMgPC0gbGluY29sbi5kYXRhWyxjb2wyXVxuICAjdHJhZmZpYyBhdCBob2xsYW5kXG4gIGhvbGxhbmQudHJhZmZpYyA8LSBob2xsYW5kLmRhdGFbLGNvbDJdXG4gIFxuICAjIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0d28gc2FtcGxlcy5cbiAgc2QubGluY29sbiA8LSBzZChsaW5jb2xuLnRyYWZmaWMpXG4gIHNkLmhvbGxhbmQgPC0gc2QoaG9sbGFuZC50cmFmZmljKVxuICBcbiAgI2xlbmd0aCBvZiBsaW5jb2xuIGFuZCBob2xsYW5kXG4gIGxlbl9saW5jb2xuIDwtIGxlbmd0aChsaW5jb2xuLnRyYWZmaWMpXG4gIGxlbl9ob2xsYW5kIDwtIGxlbmd0aChob2xsYW5kLnRyYWZmaWMpXG4gIGxlbl9saW5jb2xuXG4gIGxlbl9ob2xsYW5kXG4gIFxuICAjc3RhbmRhcmQgZGV2aWF0aW9uIG9mIGRpZmZlcmVuY2UgdHJhZmZpY1xuICBzZC5saW4uaG9sIDwtIHNxcnQoc2QubGluY29sbl4yL2xlbl9saW5jb2xuICsgc2QuaG9sbGFuZF4yL2xlbl9ob2xsYW5kKVxuICBzZC5saW4uaG9sXG4gIFxuICAjbWVhbnMgb2YgdHdvIHNhbXBsZXNcbiAgbWVhbi5saW5jb2xuIDwtIG1lYW4obGluY29sbi50cmFmZmljKVxuICBtZWFuLmhvbGxhbmQgPC0gbWVhbihob2xsYW5kLnRyYWZmaWMpXG4gIG1lYW4ubGluY29sblxuICBtZWFuLmhvbGxhbmRcbiAgXG4gICN6IHNjb3JlXG4gIHpldGEgPC0gKG1lYW4ubGluY29sbiAtIG1lYW4uaG9sbGFuZCkvc2QubGluLmhvbFxuICBwcmludChwYXN0ZSh6ZXRhLFwiIGlzIHRoZSB6LXZhbHVlXCIpKVxuICBcbiAgI3Bsb3QgcmVkIGxpbmVcbiAgcGxvdCh4PXNlcShmcm9tID0gLTUsIHRvPSA1LCBieT0wLjEpLHk9ZG5vcm0oc2VxKGZyb20gPSAtNSwgdG89IDUsICBieT0wLjEpLG1lYW49MCksdHlwZT0nbCcseGxhYiA9ICdtZWFuIGRpZmZlcmVuY2UnLCAgeWxhYj0ncG9zc2liaWxpdHknKVxuICBhYmxpbmUodj16ZXRhLCBjb2w9J3JlZCcpXG4gIFxuICAjZ2V0IHBcbiAgcCA9IDEtcG5vcm0oemV0YSlcbiAgcHJpbnQocGFzdGUocCwgXCIgaXMgdGhlIHAtdmFsdWVcIikpXG59Iiwic2FtcGxlIjoiVFJBRkZJQzwtcmVhZC5jc3YoJ2h0dHBzOi8vcmF3LmdpdGh1YnVzZXJjb250ZW50LmNvbS9kZXY3Nzk2L2RhdGExMDFfdHV0b3JpYWwvbWFpbi9maWxlcy9kYXRhc2V0L1RyYWZmaWMyMDIyLmNzdicpXG5cbnpfdGVzdChUUkFGRklDLFwiVFVOTkVMXCIsIFwiVk9MVU1FX1BFUl9NSU5VVEVcIixcIkxpbmNvbG5cIiwgXCJIb2xsYW5kXCIpIn0=
Make your own data and see how p-value changes
For students familiar with basic descriptive statistics (mean, standard deviation)we build a synthetic data set ourselves and see how difference of means and difference of standard deviations affects the p-value. We will build our two distributions ourselves - varying the means and standard deviations. We will use rnorm() to generate normal distributions with given means and standard deviations. Then we will use a permutation test (can be a z-test as well) to test the difference of means for these two synthetic distributions. See for yourself the impact means and standard deviations have on p-values.
Build the data frame with two attributes: Cat and Val, using rnorm() function.
Our null hypothesis is that Group A and Group B have identical mean(Val).
The alternative hypothesis is that the mean(Val) for Group B is higher than mean(Val) for Group A.
We will change the mean and standard deviation of the data distributions for Group A and Group B and see how these changes affect the p-value. We will first use a permutation test and a single-step permutation test (just to illustrate what happens each single step when we run a permutation test). Then we finish off with the z-test.
Permuation test
Exercise - How p-value is affected by difference of means and standard deviations
We will build our two distributions ourseleves - varying the means and standard deviations. We will use rnorm() to generate normal distributions with given means and standard deviations. Then we will use permutation test (can be z-test as well) to test difference of means for these two synthetic distributions. See for yourself the impact means and standard deviations have on p-values.
Build the data frame with two attributes: Cat and Val, using rnorm() function
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6IlBlcm11dGF0aW9uIDwtIGZ1bmN0aW9uKGRmMSxjMSxjMixuLHcxLHcyKXtcbiAgZGYgPC0gYXMuZGF0YS5mcmFtZShkZjEpXG4gIERfbnVsbDwtYygpXG4gIFYxPC1kZlssYzFdXG4gIFYyPC1kZlssYzJdXG4gIHN1Yi52YWx1ZTEgPC0gZGZbZGZbLCBjMV0gPT0gdzEsIGMyXVxuICBzdWIudmFsdWUyIDwtIGRmW2RmWywgYzFdID09IHcyLCBjMl1cbiAgRCA8LSAgYWJzKG1lYW4oc3ViLnZhbHVlMiwgbmEucm09VFJVRSkgLSBtZWFuKHN1Yi52YWx1ZTEsIG5hLnJtPVRSVUUpKVxuICBtPWxlbmd0aChWMSlcbiAgbD1sZW5ndGgoVjFbVjE9PXcyXSlcbiAgZm9yKGpqIGluIDE6bil7XG4gICAgbnVsbCA8LSByZXAodzEsbGVuZ3RoKFYxKSlcbiAgICBudWxsW3NhbXBsZShtLGwpXSA8LSB3MlxuICAgIG5mIDwtIGRhdGEuZnJhbWUoS2V5PW51bGwsIFZhbHVlPVYyKVxuICAgIG5hbWVzKG5mKSA8LSBjKFwiS2V5XCIsXCJWYWx1ZVwiKVxuICAgIHcxX251bGwgPC0gbmZbbmYkS2V5ID09IHcxLDJdXG4gICAgdzJfbnVsbCA8LSBuZltuZiRLZXkgPT0gdzIsMl1cbiAgICBEX251bGwgPC0gYyhEX251bGwsbWVhbih3Ml9udWxsLCBuYS5ybT1UUlVFKSAtIG1lYW4odzFfbnVsbCwgbmEucm09VFJVRSkpXG4gIH1cbiAgbXloaXN0PC1oaXN0KERfbnVsbCwgcHJvYj1UUlVFKVxuICBtdWx0aXBsaWVyIDwtIG15aGlzdCRjb3VudHMgLyBteWhpc3QkZGVuc2l0eVxuICBteWRlbnNpdHkgPC0gZGVuc2l0eShEX251bGwsIGFkanVzdD0yKVxuICBteWRlbnNpdHkkeSA8LSBteWRlbnNpdHkkeSAqIG11bHRpcGxpZXJbMV1cbiAgcGxvdChteWhpc3QpXG4gIGxpbmVzKG15ZGVuc2l0eSwgY29sPSdibHVlJylcbiAgYWJsaW5lKHY9RCwgY29sPSdyZWQnKVxuICBNPC1tZWFuKERfbnVsbD5EKVxuICByZXR1cm4oTSlcbn0iLCJzYW1wbGUiOiJWYWwxPC1ybm9ybSgxMCxtZWFuPTI1LCBzZD0xMClcblZhbDI8LXJub3JtKDEwLG1lYW49MzAsIHNkPTEwKVxuIFxuQ2F0MTwtcmVwKFwiR3JvdXBBXCIsMTApICAjIGZvciBleGFtcGxlIEdyb3VwQSBjYW4gYmUgSG9sbGFuZCBUdW5uZWxcbkNhdDI8LXJlcChcIkdyb3VwQlwiLDEwKSAgIyBmb3IgZXhhbXBsZSBHcm91cCBCIHdpbGwgYmUgTGluY29sbiBUdW5uZWxcblxuQ2F0MVxuQ2F0MlxuXG4jVGhlIHJlcCBjb21tYW5kIHdpbGwgcmVwZWF0LCB0aGUgdmFyaWFibGVzIHdpbGwgYmUgb2YgdHlwZSBjaGFyYWN0ZXIgYW5kIHdpbGwgY29udGFpbiAxMCB2YWx1ZXMgZWFjaC5cblxuQ2F0PC1jKENhdDEsQ2F0MikgIyBBIHZhcmlhYmxlIHdpdGggZmlyc3QgMTAgdmFsdWVzIEdyb3VwQSBhbmQgbmV4dCAxMCB2YWx1ZXMgR3JvdXBCXG5DYXRcblxuVmFsPC1jKFZhbDEsVmFsMilcblZhbFxuXG5kPC1kYXRhLmZyYW1lKENhdCxWYWwpXG5kXG5cblBlcm11dGF0aW9uKGQsIFwiQ2F0XCIsIFwiVmFsXCIsMTAwMCxcIkdyb3VwQVwiLCBcIkdyb3VwQlwiKVxuXG5PYnNlcnZlZF9EaWZmZXJlbmNlPC1tZWFuKGRbZCRDYXQ9PSdHcm91cEInLDJdKS1tZWFuKGRbZCRDYXQ9PSdHcm91cEEnLDJdKVxuT2JzZXJ2ZWRfRGlmZmVyZW5jZVxuXG4jVGhpcyB3aWxsIGNhbGN1bGF0ZSB0aGUgbWVhbiBvZiB0aGUgc2Vjb25kIGNvbHVtbiAoaGF2aW5nIDEwIHJhbmRvbSB2YWx1ZXMgZm9yIGVhY2ggZ3JvdXApLCBhbmQgdGhlIG1lYW4gb2YgZ3JvdXBCIHZhbHVlcyBpcyBzdWJ0cmFjdGVkIGZyb20gdGhlIG1lYW4gb2YgZ3JvdXBBIHZhbHVlcywgd2hpY2ggd2lsbCBnaXZlIHlvdSB0aGUgdmFsdWUgb2YgdGhlIGRpZmZlcmVuY2Ugb2YgdGhlIG1lYW4uXG4gXG4gI1RyeSBjaGFuZ2luZyBtZWFuIGFuZCBzZCB2YWx1ZXMuIFdoZW4geW91IHJ1biB0aGlzIHlvdSB3aWxsIHNlZSB0aGF0IHRoZSBkaWZmZXJlbmNlIGlzIHNvbWV0aW1lcyBuZWdhdGl2ZSAjb3Igc29tZXRpbWVzIHBvc2l0aXZlLiJ9
One permutation at a time
eyJsYW5ndWFnZSI6InIiLCJzYW1wbGUiOiJ0cmFmZmljPC1yZWFkLmNzdignaHR0cHM6Ly9yYXcuZ2l0aHVidXNlcmNvbnRlbnQuY29tL2Rldjc3OTYvZGF0YTEwMV90dXRvcmlhbC9tYWluL2ZpbGVzL2RhdGFzZXQvVHJhZmZpYzIwMjIuY3N2JylcblxucmFuTnVtIDwtIHNhbXBsZSgxOm5yb3codHJhZmZpYyksbnJvdyh0cmFmZmljKSlcbnJhbk51bVsxOjVdXG5cblZPTFVNRV9QRVJfTUlOVVRFPC10cmFmZmljJFZPTFVNRV9QRVJfTUlOVVRFW3Jhbk51bV1cblRVTk5FTDwtdHJhZmZpYyRUVU5ORUxcblxuUGVybXV0ZWRfdHJhZmZpYzwtZGF0YS5mcmFtZShUVU5ORUwsIFZPTFVNRV9QRVJfTUlOVVRFKVxuXG5tZWFuKHRyYWZmaWNbdHJhZmZpYyRUVU5ORUw9PSdMaW5jb2xuJywgXSRWT0xVTUVfUEVSX01JTlVURSkgLW1lYW4odHJhZmZpY1t0cmFmZmljJFRVTk5FTD09J0hvbGxhbmQnLCBdJFZPTFVNRV9QRVJfTUlOVVRFKVxuXG5tZWFuKFBlcm11dGVkX3RyYWZmaWNbUGVybXV0ZWRfdHJhZmZpYyRUVU5ORUw9PSdMaW5jb2xuJywgXSRWT0xVTUVfUEVSX01JTlVURSktbWVhbihQZXJtdXRlZF90cmFmZmljW1Blcm11dGVkX3RyYWZmaWMkVFVOTkVMPT0nSG9sbGFuZCcsIF0kVk9MVU1FX1BFUl9NSU5VVEUpIn0=
z-test
How p-value is affected by difference of means and standard deviations.
We will build two distributions ourselves - varying the means and standard deviations. We will use rnorm() to generate normal distributions with given means and standard deviations. Then we will use a permutation test (can be a z-test as well) to test the difference of means for these two synthetic distributions. See for yourself the impact means and standard deviations have on p-values. You can do it by changing values of mean and standard deviation in the rnorm() function.
Clearly the further apart the mean values are - the lower the p-value. But how do standard deviations affect the p-value? See for yourself.
Build the data frame with two attributes: Cat and Val, using rnorm() function
eyJsYW5ndWFnZSI6InIiLCJwcmVfZXhlcmNpc2VfY29kZSI6InpfdGVzdCA8LSBmdW5jdGlvbihkYXRhLGNvbDEsY29sMixzdWIxLHN1YjIpIHtcbiAgZGF0YSA8LSBhcy5kYXRhLmZyYW1lKGRhdGEpXG4gIFYxPC1kYXRhWyxjb2wxXVxuICBWMjwtZGF0YVssY29sMl1cbiAgI2RhdGEgY2xlYW4gYW5kIHN1YnNldCwgZWl0aGVyXG4gIGxpbmNvbG4uZGF0YSA8LSBzdWJzZXQoZGF0YSwgVjEgPT0gc3ViMSlcbiAgaG9sbGFuZC5kYXRhIDwtIHN1YnNldChkYXRhLCBWMSA9PSBzdWIyKVxuICBcbiAgI3RyYWZmaWMgYXQgbGluY29sblxuICBsaW5jb2xuLnRyYWZmaWMgPC0gbGluY29sbi5kYXRhWyxjb2wyXVxuICAjdHJhZmZpYyBhdCBob2xsYW5kXG4gIGhvbGxhbmQudHJhZmZpYyA8LSBob2xsYW5kLmRhdGFbLGNvbDJdXG4gIFxuICAjIHN0YW5kYXJkIGRldmlhdGlvbiBvZiB0d28gc2FtcGxlcy5cbiAgc2QubGluY29sbiA8LSBzZChsaW5jb2xuLnRyYWZmaWMpXG4gIHNkLmhvbGxhbmQgPC0gc2QoaG9sbGFuZC50cmFmZmljKVxuICBcbiAgI2xlbmd0aCBvZiBsaW5jb2xuIGFuZCBob2xsYW5kXG4gIGxlbl9saW5jb2xuIDwtIGxlbmd0aChsaW5jb2xuLnRyYWZmaWMpXG4gIGxlbl9ob2xsYW5kIDwtIGxlbmd0aChob2xsYW5kLnRyYWZmaWMpXG4gIGxlbl9saW5jb2xuXG4gIGxlbl9ob2xsYW5kXG4gIFxuICAjc3RhbmRhcmQgZGV2aWF0aW9uIG9mIGRpZmZlcmVuY2UgdHJhZmZpY1xuICBzZC5saW4uaG9sIDwtIHNxcnQoc2QubGluY29sbl4yL2xlbl9saW5jb2xuICsgc2QuaG9sbGFuZF4yL2xlbl9ob2xsYW5kKVxuICBzZC5saW4uaG9sXG4gIFxuICAjbWVhbnMgb2YgdHdvIHNhbXBsZXNcbiAgbWVhbi5saW5jb2xuIDwtIG1lYW4obGluY29sbi50cmFmZmljKVxuICBtZWFuLmhvbGxhbmQgPC0gbWVhbihob2xsYW5kLnRyYWZmaWMpXG4gIG1lYW4ubGluY29sblxuICBtZWFuLmhvbGxhbmRcbiAgXG4gICN6IHNjb3JlXG4gIHpldGEgPC0gKG1lYW4ubGluY29sbiAtIG1lYW4uaG9sbGFuZCkvc2QubGluLmhvbFxuICBwcmludChwYXN0ZSh6ZXRhLFwiIGlzIHRoZSB6LXZhbHVlXCIpKVxuICBcbiAgI3Bsb3QgcmVkIGxpbmVcbiAgcGxvdCh4PXNlcShmcm9tID0gLTUsIHRvPSA1LCBieT0wLjEpLHk9ZG5vcm0oc2VxKGZyb20gPSAtNSwgdG89IDUsICBieT0wLjEpLG1lYW49MCksdHlwZT0nbCcseGxhYiA9ICdtZWFuIGRpZmZlcmVuY2UnLCAgeWxhYj0ncG9zc2liaWxpdHknKVxuICBhYmxpbmUodj16ZXRhLCBjb2w9J3JlZCcpXG4gIFxuICAjZ2V0IHBcbiAgcCA9IDEtcG5vcm0oemV0YSlcbiAgcHJpbnQocGFzdGUocCwgXCIgaXMgdGhlIHAtdmFsdWVcIikpXG59Iiwic2FtcGxlIjoiVmFsMTwtcm5vcm0oMTAsbWVhbj0yNSwgc2Q9MTApXG5WYWwyPC1ybm9ybSgxMCxtZWFuPTM1LCBzZD0xMClcbkNhdDE8LXJlcChcIkdyb3VwQVwiLDEwKSAgXG5DYXQyPC1yZXAoXCJHcm91cEJcIiwxMCkgIFxuQ2F0PC1jKENhdDEsQ2F0MikgXG5WYWw8LWMoVmFsMSxWYWwyKVxuXG5kPC1kYXRhLmZyYW1lKENhdCxWYWwpXG5PYnNlcnZlZF9EaWZmZXJlbmNlPC1tZWFuKGRbZCRDYXQ9PSdHcm91cEInLDJdKS1tZWFuKGRbZCRDYXQ9PSdHcm91cEEnLDJdKVxuT2JzZXJ2ZWRfRGlmZmVyZW5jZVxuXG56X3Rlc3QoZCxcIkNhdFwiLCBcIlZhbFwiLFwiR3JvdXBCXCIsIFwiR3JvdXBBXCIpIn0=